
This task was prepared for CTF competition that took place during Confidence 2017
conference. To get the flag we need crack a password in a game running on a Pegasus-like
console (Pegasus is the Polish name for Famicom/NES clones). The game is very simple.
You can see a flag moving between the left and right edge of the screen.To enter password
you must shoot the flag moving between edges. The game accepts digit that is cover by flag
during shooting as a next character of password (this game needs a Zapper gun). When
you type a correct password (16 bit length) you will see the flag.

For players was prepared *.nes file but other people had possibility to play the game on a
real console connected to a TV. The ROM with the game was available only on website for
players so I decided to "stole" the ROM during bodacious action ;-) (fast registration just to
download this one file).

Few days after end of the conference I’ve started analyzing the game at home. As an
emulator I've chosen FCEUX. I'm recommending version for Windows because version for
Linux is poorer (no debugger for example). What I want achieve? I want create script that will
brute force the password. Probably that was faster than learning about programming for
Famicom.

First step was to found way to control the game by changing values in a memory.

Where and how are shots store?

The shots counter must be stored somewhere but at this moment I don't know anything
about format of this data. Good idea was to use RAM Search (Tools menu). With this
window I can filter data by number of changes.

I’ve assumed that place where new shot will be saved will be written only once. I set criterios
of filtering and I've shoot once. After first search tool has found few values that I had to
remember. After reset searching results I've shoot one more time and I searched values
again. Comparison between these two shots shows very interesting address which is
incrementing with every shoot. Let's see this place in Hex Editor (Debug menu).

It looks like shots are just table with ASCII characters. Also few bytes later (0x7f9) we can
find very interesting variable that remembers last shoot (later it will be very important).
Address 0x7fd is also very interesting. It decrements with every next shot. This value tells us
how many shots left.

At this moment I know where are the most important values, but how to run function inside
the game that will analyze the password? Hex editor shows data in real time. I've realized
that when I'm pressing mouse button (Zapper's trigger in the emulator) value at address
0x7e5 is changing. When this value hits zero the game is running shoot procedure (screen
blinking that probably you know from games like Duck Hunt or Wild Gunman).

16th bit of the password was problematic. You see with final shot, last bit of the password is
overwriting by value from buffer at 0x7f9. As I said this is some kind of buffer that keeps last
shoot value. By using LUA API I can't control Cheat/Freeze feature of the emulator, but still I
can do it manually. Disadvantage of this solution is that at single instance of the script I must
choose which values I want check: odd or even. To switch between one of these groups of
values I must change cheat setting. Cheat tool in the emulator can be found at Tools menu.
To set cheat you must type Addr: 07f9, Val 30 and press Add. Now buffer is frozen and as a
result of shooting procedure game will always get 0.

How check that password is correct? At 0x759 is buffer with answer that we can see in the
screen after shoot 16th bit of the password. I’ve assumed that correct answer starts from
different character than “s” or “W”.

Full script and NES file are available here. Shorts comments for the script. Pass2bytes
function converts number with a new password to ASCII table that represents data in binary
format. Unfortunately LUA 5.1 hasn't binary operations like shifting, so I implemented simple
algorithm that is know from CS lessons to convert decimal value to binary format. I've
created getResult function to get first letter of the answer from the game and check that the
password is correct. If first letter of the answer is different than "s" or "W" the script will end
execution. Very important is function emu.frameadvance() from API. This function tells to the
emulator to calculates next frame of the game. Without it the emulator will hangs on during
waiting for new value inside loop. At the beginning I've tried reset game with next password
but this method had one main disadvantage. After restart I must wait for end of game
loading. Loading previous state of the emulator is bit faster. This is reason why before main
loop the script was saving state of the game. Saved state is loaded at the end of the main
loop.

To check even passwords set PARITY variable to 0 and Val in cheat setting to 0x30. For odd
values set 1 and 0x31.

https://bitbucket.org/Lacky/ctf-redacted/

About the author
This article was created by Artur “Lacky” Łącki. If you have any questions just send me an
email to address alacki93@gmail.com. This article is distributed under CC BY-NC 4.0
license.

http://lackylab.tk/
mailto:alacki93@gmail.com

